Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Rep ; 14(1): 7742, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565895

Evidence from genetic and epidemiological studies point to lipid metabolism defects in both the brain and periphery being at the core of Alzheimer's disease (AD) pathogenesis. Previously, we reported that central inhibition of the rate-limiting enzyme in monounsaturated fatty acid synthesis, stearoyl-CoA desaturase (SCD), improves brain structure and function in the 3xTg mouse model of AD (3xTg-AD). Here, we tested whether these beneficial central effects involve recovery of peripheral metabolic defects, such as fat accumulation and glucose and insulin handling. As early as 3 months of age, 3xTg-AD mice exhibited peripheral phenotypes including increased body weight and visceral and subcutaneous white adipose tissue as well as diabetic-like peripheral gluco-regulatory abnormalities. We found that intracerebral infusion of an SCD inhibitor that normalizes brain fatty acid desaturation, synapse loss and learning and memory deficits in middle-aged memory-impaired 3xTg-AD mice did not affect these peripheral phenotypes. This suggests that the beneficial effects of central SCD inhibition on cognitive function are not mediated by recovery of peripheral metabolic abnormalities. Given the widespread side-effects of systemically administered SCD inhibitors, these data suggest that selective inhibition of SCD in the brain may represent a clinically safer and more effective strategy for AD.


Alzheimer Disease , Stearoyl-CoA Desaturase , Mice , Animals , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Lipid Metabolism/physiology , Lipogenesis , Disease Models, Animal , Mice, Transgenic
2.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200230, 2024 May.
Article En | MEDLINE | ID: mdl-38669615

BACKGROUND AND OBJECTIVES: The aim of this study was to identify novel biomarkers for multiple sclerosis (MS) diagnosis and prognosis, addressing the critical need for specific and prognostically valuable markers in the field. METHODS: We conducted an extensive proteomic investigation, combining analysis of (1) CSF proteome from symptomatic controls, fast and slow converters after clinically isolated syndromes, and patients with relapsing-remitting MS (n = 10 per group) using label-free quantitative proteomics and (2) oligodendrocyte secretome changes under proinflammatory or proapoptotic conditions using stable isotope labeling by amino acids in cell culture. Proteins exhibiting differential abundance in both proteomic analyses were combined with other putative MS biomarkers, yielding a comprehensive list of 87 proteins that underwent quantification through parallel reaction monitoring (PRM) in a novel cohort, comprising symptomatic controls, inflammatory neurologic disease controls, and patients with MS at various disease stages (n = 10 per group). The 11 proteins that passed this qualification step were subjected to a new PRM assay within an expanded cohort comprising 158 patients with either MS at different disease stages or other inflammatory or noninflammatory neurologic disease controls. RESULTS: This study unveiled a promising biomarker signature for MS, including previously established candidates, such as chitinase 3-like protein 1, chitinase 3-like protein 2, chitotriosidase, immunoglobulin kappa chain region C, neutrophil gelatinase-associated lipocalin, and CD27. In addition, we identified novel markers, namely cat eye syndrome critical region protein 1 (adenosine deaminase 2, a therapeutic target in multiple sclerosis) and syndecan-1, a proteoglycan, also known as plasma cell surface marker CD138 and acting as chitinase 3-like protein 1 receptor implicated in inflammation and cancer signaling. CD138 exhibited good diagnostic accuracy in distinguishing MS from inflammatory neurologic disorders (area under the curve [AUC] = 0.85, CI 0.75-0.95). CD138 immunostaining was also observed in the brains of patients with MS and cultured oligodendrocyte precursor cells but was absent in astrocytes. DISCUSSION: These findings identify CD138 as a specific CSF biomarker for MS and suggest the selective activation of the chitinase 3-like protein 1/CD138 pathway within the oligodendrocyte lineage in MS. They offer promising prospects for improving MS diagnosis and prognosis by providing much-needed specificity and clinical utility. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that CD138 distinguishes multiple sclerosis from other inflammatory neurologic disorders with an AUC of 0.85 (95% CI 0.75-0.95).


Biomarkers , Multiple Sclerosis, Relapsing-Remitting , Syndecan-1 , Humans , Biomarkers/cerebrospinal fluid , Adult , Female , Male , Multiple Sclerosis, Relapsing-Remitting/cerebrospinal fluid , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Middle Aged , Syndecan-1/cerebrospinal fluid , Cohort Studies , Proteomics , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/diagnosis , Oligodendroglia/metabolism
3.
Brain Commun ; 4(4): fcac171, 2022.
Article En | MEDLINE | ID: mdl-35813882

Vitamin D deficiency has been associated with the risk of multiple sclerosis, disease activity and progression. Results from in vitro experiments, animal models and analysis of human samples from randomized controlled trials provide comprehensive data illustrating the pleiotropic actions of Vitamin D on the immune system. They globally result in immunomodulation by decreasing differentiation of effector T and B cells while promoting regulatory subsets. Vitamin D also modulates innate immune cells such as macrophages, monocytes and dendritic cells, and acts at the level of the blood-brain barrier reducing immune cell trafficking. Vitamin D exerts additional activity within the central nervous system reducing microglial and astrocytic activation. The immunomodulatory role of Vitamin D detected in animal models of multiple sclerosis has suggested its potential therapeutic use for treating multiple sclerosis. In this review, we focus on recent published data describing the biological effects of Vitamin D in animal models of multiple sclerosis on immune cells, blood-brain barrier function, activation of glial cells and its potential neuroprotective effects. Based on the current knowledge, we also discuss optimization of therapeutic interventions with Vitamin D in patients with multiple sclerosis, as well as new technologies allowing in-depth analysis of immune cell regulations by vitamin D.

4.
Front Immunol ; 13: 866092, 2022.
Article En | MEDLINE | ID: mdl-35572543

Radiologically Isolated Syndrome (RIS) is characterized by MRI-typical brain lesions fulfilling the 2009 Okuda criteria, detected in patients without clinical conditions suggestive of MS. Half of all RIS patients convert to MS within 10 years. The individual course of the disease, however, is highly variable with 12% of RIS converting directly to progressive MS. Demographic and imaging markers have been associated with the risk of clinical MS in RIS: male sex, younger age, infra-tentorial, and spinal cord lesions on the index scan and gadolinium-enhancing lesions on index or follow-up scans. Although not considered as a distinct MS phenotype, RIS certainly shares common pathological features with early active and progressive MS. In this review, we specifically focus on biological markers that may help refine the risk stratification of clinical MS and disability for early treatment. Intrathecal B-cell activation with cerebrospinal fluid (CSF) oligoclonal bands, elevated kappa free light chains, and cytokine production is specific to MS, whereas neurofilament light chain (NfL) levels reflect disease activity associated with neuroaxonal injury. Specific microRNA profiles have been identified in RIS converters in both CSF and blood. CSF levels of chitinases and glial acidic fibrillary protein (GFAP) reflecting astrogliosis might help predict the evolution of RIS to progressive MS. Innovative genomic, proteomic, and metabolomic approaches have provided several new candidate biomarkers to be explored in RIS. Leveraging data from randomized controlled trials and large prospective RIS cohorts with extended follow-up to identify, as early as possible, biomarkers for predicting greater disease severity would be invaluable for counseling patients, managing treatment, and monitoring.


Demyelinating Diseases , Multiple Sclerosis , Biomarkers , Demyelinating Diseases/cerebrospinal fluid , Humans , Immunoglobulin kappa-Chains , Male , Multiple Sclerosis/diagnostic imaging , Prospective Studies , Proteomics
5.
Mov Disord ; 35(7): 1189-1198, 2020 07.
Article En | MEDLINE | ID: mdl-32353194

BACKGROUND: Neuroleptic drug-induced parkinsonism (NIP) is a leading cause of parkinsonism, particularly in aging. Based on abnormal dopamine transporter scan results, individuals displaying chronic NIP are often diagnosed with Lewy-body Parkinson's disease (PD), but this assumption needs further substantiation. OBJECTIVE: To quantitate the profile of striatal dopaminergic nerve terminal density in NIP relative to PD. METHODS: We used the positron emission tomography ligand [11 C](+)-dihydrotetrabenazine targeting vesicular monoamine transporter type 2 (VMAT2) binding sites and collected various clinical parameters (motor ratings, olfaction, polysomnography to document rapid eye movement sleep muscle activity, quantitative sensory testing for pain thresholds) possibly predicting binding results in patients older than age 50 living with schizophrenia spectrum disorders under long-term stable antipsychotic drug treatment, with (N = 11) or without (N = 11) chart documention of chronic NIP, and compared them to healthy volunteers (N = 11) and others medicated for PD (N = 12). RESULTS: Striatal VMAT2 binding was dichotomous in the NIP group between those with spared (N = 5) or low (N = 6) PD-like values. Striatal binding reduction in the low VMAT2-NIP group was asymmetric without the gradient of maximal involvement in the posterior putamen typical of PD. Anosmia was the only nonmotor parameter measured matching the abnormal striatal VMAT2 binding status. CONCLUSION: These preliminary observations suggest that striatal VMAT2 binding is abnormal in a fraction of chronic NIP cases and differs in spatial distribution from PD. The possibility of a drug-induced axonopathy and resultant synaptopathy, as well as the evolution of the binding deficit, warrant further longitudinal studies in a large cohort. © 2020 International Parkinson and Movement Disorder Society.


Antipsychotic Agents , Parkinson Disease, Secondary , Parkinsonian Disorders , Antipsychotic Agents/adverse effects , Corpus Striatum/metabolism , Humans , Middle Aged , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/diagnostic imaging , Positron-Emission Tomography , Vesicular Monoamine Transport Proteins
...